
Accelerating simulations by clustering
bodies using the Barnes-Hut algorithm

Simulating forces such as gravity is a demanding
task, because of the interactions every object has with all
the other objects. With n objects, there are n−1 forces
acting on each body, so all in all, there are n · (n − 1)
forces acting. The Barnes-Hut algorithm can be used
to approximate the forces that need to be calculated by
clustering the objects, sacrificing accuracy. In order to
take those clusters into effect, the algorithm takes the
size of the individual clusters and their distance to the
respective object into account.

d

s1r

q1 s1r

Figure 1: A cluster of stars that is far enough away from a single
star can be abstracted as a single point in space.

θ =
d

r
(1)

The above equation describes how to cluster the ob-
jects. If a body (s1) is far away from a small cluster
(r ≫ d), θ gets very small and the cluster in which
the body is located can be abstracted to a single point.
0 ≤ θ ≤ 1 is provided by the user as a threshold impact-
ing the accuracy and the speed of the simulation. Its
value should be tuned in depending on the given data,
as it decides which stars are approximated as a single
cluster.

Everything is based on the stars being in a tree, so
we need to subdivide the space into cells. Such a subdi-
vision can be seen in Figure 2a and the process can be
seen on the bottom of this page.

When calculating the forces affecting the object F in
Figure 2a, the Barnes-Hut algorithm does not consider
all objects indvidually, but only the ones that fall over
the threshold θ. For the object F , this means that the
Objects B and C are not calculated independently, but
as a single object (a new abstract object is created in
the center of gravity of B and C).

A

B
C

D

E

F G H

(a) Cell representation

A

B C

D E F G

H

(b) Tree representation

Figure 2: Visual representations of the same Barnes-Hut tree.
(http://arborjs.org/docs/barnes-hut)

The tree in Figure 2b describes the cells from Figure
2a - top left, top right, bottom left and bottom right are
depicted as a new layer in the tree accordingly. While
building the tree, we are going to store the center of grav-
ity and the total mass of each inner node. The complete
process of simulating the force acting on a single star
works in the following way:

We walk through the tree starting from the root in
the direction of the leaves, using d

r
< θ as the end condi-

tion. We use θ as a threshold for controlling how many
forces to take into account (0 ≤ θ ≤ 1). The force acting
on a star is calculated when a leaf is reached or when an
end-condition is met (thus resulting in no further recur-
sion into the tree from that node on).

Experimenting with the value of θ on the dataset
can optimize the runtime from O(n2) to as low as
O(n · log(n)). This means that if we’ve got 2 ·108 bodies
and can calculate the forces acting on 106 bodies per sec-
ond, the total runtime is reduced from about 1200 Years
down to 45 minutes optimally (the time to build the tree
is an actual computational complexity (Θ(n · log(n))),
not a measured runtime and does not depend on θ ).

This principle can also be applied to other types of
problems such as simulating molecules. If you come to
do something with it, don’t mind writing to me!

@hanemile on most platforms.

We start with an empty space

A A

We insert the Star A

A

B

B A

Inserting B: Subdivide, shift A,
shift B from root

A

B

C

B

C A

Inserting C: Subdivide, shift A,
shift C from root

Emile

Accelerating simulations by clustering bodies using...Algorithmics

https://github.com/hanemile
https://twitter.com/hanemile

SAA-ALL 0.0.56


